In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-na\"ive segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-na\"ive segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-na\"ive segmentation networks (AUC up to 0.874).
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
The tracking-by-detection paradigm today has become the dominant method for multi-object tracking and works by detecting objects in each frame and then performing data association across frames. However, its sequential frame-wise matching property fundamentally suffers from the intermediate interruptions in a video, such as object occlusions, fast camera movements, and abrupt light changes. Moreover, it typically overlooks temporal information beyond the two frames for matching. In this paper, we investigate an alternative by treating object association as clip-wise matching. Our new perspective views a single long video sequence as multiple short clips, and then the tracking is performed both within and between the clips. The benefits of this new approach are two folds. First, our method is robust to tracking error accumulation or propagation, as the video chunking allows bypassing the interrupted frames, and the short clip tracking avoids the conventional error-prone long-term track memory management. Second, the multiple frame information is aggregated during the clip-wise matching, resulting in a more accurate long-range track association than the current frame-wise matching. Given the state-of-the-art tracking-by-detection tracker, QDTrack, we showcase how the tracking performance improves with our new tracking formulation. We evaluate our proposals on two tracking benchmarks, TAO and MOT17 that have complementary characteristics and challenges each other.
translated by 谷歌翻译
Scaling object taxonomies is one of the important steps toward a robust real-world deployment of recognition systems. We have faced remarkable progress in images since the introduction of the LVIS benchmark. To continue this success in videos, a new video benchmark, TAO, was recently presented. Given the recent encouraging results from both detection and tracking communities, we are interested in marrying those two advances and building a strong large vocabulary video tracker. However, supervisions in LVIS and TAO are inherently sparse or even missing, posing two new challenges for training the large vocabulary trackers. First, no tracking supervisions are in LVIS, which leads to inconsistent learning of detection (with LVIS and TAO) and tracking (only with TAO). Second, the detection supervisions in TAO are partial, which results in catastrophic forgetting of absent LVIS categories during video fine-tuning. To resolve these challenges, we present a simple but effective learning framework that takes full advantage of all available training data to learn detection and tracking while not losing any LVIS categories to recognize. With this new learning scheme, we show that consistent improvements of various large vocabulary trackers are capable, setting strong baseline results on the challenging TAO benchmarks.
translated by 谷歌翻译
Test-time adaptation (TTA) has attracted significant attention due to its practical properties which enable the adaptation of a pre-trained model to a new domain with only target dataset during the inference stage. Prior works on TTA assume that the target dataset comes from the same distribution and thus constitutes a single homogeneous domain. In practice, however, the target domain can contain multiple homogeneous domains which are sufficiently distinctive from each other and those multiple domains might occur cyclically. Our preliminary investigation shows that domain-specific TTA outperforms vanilla TTA treating compound domain (CD) as a single one. However, domain labels are not available for CD, which makes domain-specific TTA not practicable. To this end, we propose an online clustering algorithm for finding pseudo-domain labels to obtain similar benefits as domain-specific configuration and accumulating knowledge of cyclic domains effectively. Moreover, we observe that there is a significant discrepancy in terms of prediction quality among samples, especially in the CD context. This further motivates us to boost its performance with gradient denoising by considering the image-wise similarity with the source distribution. Overall, the key contribution of our work lies in proposing a highly significant new task compound domain test-time adaptation (CD-TTA) on semantic segmentation as well as providing a strong baseline to facilitate future works to benchmark.
translated by 谷歌翻译
Universal Domain Adaptation aims to transfer the knowledge between the datasets by handling two shifts: domain-shift and category-shift. The main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target. Most existing methods approach this problem by first training the target adapted known classifier and then relying on the single threshold to distinguish unknown target samples. However, this simple threshold-based approach prevents the model from considering the underlying complexities existing between the known and unknown samples in the high-dimensional feature space. In this paper, we propose a new approach in which we use two sets of feature points, namely dual Classifiers for Prototypes and Reciprocals (CPR). Our key idea is to associate each prototype with corresponding known class features while pushing the reciprocals apart from these prototypes to locate them in the potential unknown feature space. The target samples are then classified as unknown if they fall near any reciprocals at test time. To successfully train our framework, we collect the partial, confident target samples that are classified as known or unknown through on our proposed multi-criteria selection. We then additionally apply the entropy loss regularization to them. For further adaptation, we also apply standard consistency regularization that matches the predictions of two different views of the input to make more compact target feature space. We evaluate our proposal, CPR, on three standard benchmarks and achieve comparable or new state-of-the-art results. We also provide extensive ablation experiments to verify our main design choices in our framework.
translated by 谷歌翻译
There exists unexplained diverse variation within the predefined colon cancer stages using only features either from genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved in staging and treatment outcome, hence motivated by the advancement of Deep Neural Network libraries and different structures and factors within some genomic dataset, we aggregate atypical patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA Methylation as an integrative input source into an ensemble deep neural network for colon cancer stages classification and samples stratification into low or high risk survival groups. The results of our Ensemble Deep Convolutional Neural Network model show an improved performance in stages classification on the integrated dataset. The fused input features return Area under curve Receiver Operating Characteristic curve (AUC ROC) of 0.95 compared with AUC ROC of 0.71 and 0.68 obtained when only genomics and images features are used for the stage's classification, respectively. Also, the extracted features were used to split the patients into low or high risk survival groups. Among the 2548 fused features, 1695 features showed a statistically significant survival probability differences between the two risk groups defined by the extracted features.
translated by 谷歌翻译
Skeleton-based action recognition has attracted considerable attention due to its compact skeletal structure of the human body. Many recent methods have achieved remarkable performance using graph convolutional networks (GCNs) and convolutional neural networks (CNNs), which extract spatial and temporal features, respectively. Although spatial and temporal dependencies in the human skeleton have been explored, spatio-temporal dependency is rarely considered. In this paper, we propose the Inter-Frame Curve Network (IFC-Net) to effectively leverage the spatio-temporal dependency of the human skeleton. Our proposed network consists of two novel elements: 1) The Inter-Frame Curve (IFC) module; and 2) Dilated Graph Convolution (D-GC). The IFC module increases the spatio-temporal receptive field by identifying meaningful node connections between every adjacent frame and generating spatio-temporal curves based on the identified node connections. The D-GC allows the network to have a large spatial receptive field, which specifically focuses on the spatial domain. The kernels of D-GC are computed from the given adjacency matrices of the graph and reflect large receptive field in a way similar to the dilated CNNs. Our IFC-Net combines these two modules and achieves state-of-the-art performance on three skeleton-based action recognition benchmarks: NTU-RGB+D 60, NTU-RGB+D 120, and Northwestern-UCLA.
translated by 谷歌翻译
Reliable forecasting of traffic flow requires efficient modeling of traffic data. Different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture the complex underlying spatial-temporal relations of traffic networks. However, methods still struggle to capture different local and global dependencies of long-range nature. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. In this paper, we focus on solving these problems by proposing a novel deep learning framework - STLGRU. Specifically, our proposed STLGRU can effectively capture both local and global spatial-temporal relations of a traffic network using memory-augmented attention and gating mechanism. Instead of employing separate temporal and spatial components, we show that our memory module and gated unit can learn the spatial-temporal dependencies successfully, allowing for reduced memory usage with fewer parameters. We extensively experiment on several real-world traffic prediction datasets to show that our model performs better than existing methods while the memory footprint remains lower. Code is available at \url{https://github.com/Kishor-Bhaumik/STLGRU}.
translated by 谷歌翻译